Fully Automatic Technique for Liver Segmentation from Abdominal CT Scan with Knowledge-Based Constraints
نویسنده
چکیده
منابع مشابه
A Hybrid Method for Segmentation and Visualization of Teeth in Multi-Slice CT scan Images
Introduction: Various computer assisted medical procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries require automatic quantification and volumetric visualization of teeth. In this regard, segmentation is a major step. Material and Methods: In this paper, inspired by our previous experiences and considering the anatomical knowledge of teeth and jaws, we prop...
متن کاملGraph Cutting Tumor Images
A new proposed method of fully automatic processing frameworks is based on graph-cut active contour algorithms. This paper addresses the problem of segmenting a liver and tumor regions from the abdominal CT images. A predicate is defined for measuring the evidence for a boundary between two regions using a Graph-based representation of the image. The algorithm is applied to image segmentation u...
متن کاملFully automatic liver segmentation using probability atlas registration
Liver segmentation from abdominal Computer Tomography (CT) images plays an important role in liver disease diagnosis as well as liver surgical planning. In this paper, a hybrid approach is proposed for fully automatic liver position search and liver segmentation in CT images. First liver intensity range is detected based on prior knowledge of liver volume. Then region of interest (ROI) is extra...
متن کاملLiver segmentation in CT images using three dimensional to two dimensional fully connected network
The need for CT scan analysis is growing for pre-diagnosis and therapy of abdominal organs. Automatic organ segmentation of abdominal CT scan can help radiologists analyze the scans faster and segment organ images with fewer errors. However, existing methods are not efficient enough to perform the segmentation process for victims of accidents and emergencies situations. In this paper we propose...
متن کاملTowards Automatic Abdominal Multi-Organ Segmentation in Dual Energy CT using Cascaded 3D Fully Convolutional Network
Automatic multi-organ segmentation of the dual energy computed tomography (DECT) data can be beneficial for biomedical research and clinical applications. However, it is a challenging task. Recent advances in deep learning showed the feasibility to use 3-D fully convolutional networks (FCN) for voxel-wise dense predictions in single energy computed tomography (SECT). In this paper, we proposed ...
متن کامل